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Abstract. The new perturbation theory for the problem of the nonstationary anharmonic
oscillator with polynomial nonstationary perturbation is proposed. As a zeroth-order
approximation, the exact wavefunction of the harmonic oscillator with variable frequency in
external field is used. Based on some intrinsic properties of unperturbed wavefunctions, the
variational–iterational method is proposed, which makes it possible to correct both the amplitude
and phase of the wavefunction. As an application, the first-order corrections are proposed for
both the wavefunction andS-matrix elements for asymmetric perturbation potential of the type
V (x, τ ) = α(τ)x3 + β(τ)x4. The transition amplitude ‘ground state–ground state’W00(λ; ρ)
is analysed in detail depending on the perturbation parameterλ (including the strong coupling
regionλ ∼ 1) and the one-dimensional refraction coefficientρ.

1. Introduction

Every successful effort in the investigation of some physical problem in the strong interaction
region usually brings new insight into the behaviour of a corresponding system. Thus,
the outstanding results, obtained in the solution of one-dimensional model problems in
quantum field theory, molecular and solid-state physics [1–3], are of great interest. But
the investigation becomes much more complicated when many-dimensional problems are
approached. In such a situation contradictory results are possible even in calculations of
the system eigenenergy [4].

The situation becomes even more dramatic when dealing with nonstationary problems
with eigenfunctions basis, changing in time. The most important example of it is given by
the model of the two-dimensional scattering problem, which is called the collinear model for
rearrangement [5]. It is one of the simplest and still realistic descriptions of the three-body
reaction ofA+ (B,C)n→ (A,B)m + C type.

This problem can be of principle importance both for the practical applications in the
theory of chemical reaction for moderate energies and for illuminating the mechanisms of
the rearrangement in the multichannel scattering theory. It can also be regarded as a good
test bed for the application of the nonperturbative method in the realistic few-body problem
with all reaction channels involved.

In our previous paper [6] it was shown, that in the limit ¯h→ 0 this problem is effectively
reduced to that for one-dimensional anharmonic oscillators with the frequency�(τ),
changing in the field of external forceF(τ). Numerous quantum-chemical calculations
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of the potential energy surface for the most popular three-particle systems have shown
strong anharmonism in normal coordinates even for principle quantum numbers as low as
n > 3–4.

Here we propose a method that seems to be a natural development of the ideas of
stationary perturbation theory of [3] for the case of nonstationary coefficients of a zeroth-
order equation. The method is of variational/iteration type and is essentially backed by
the main ideas of the singular perturbation theory—one can expand only such parts of the
solution, that do not bring singularities, and if one cannot find a pattern for the singular part
of the solution it is possible to expand it in the exponential.

Our final aim would be the derivation of the scattering matrix representation, which
makes the computation of simulations of the probabilities for all pertinent scattering
mechanisms possible, taking into account close coupling of many channels, resonance effects
and chaotic behaviour in the intermediate state.

The perturbation theory proposed might be especially interesting for the calculation
of the wavepacket of the scattering system, since harmonic approximation, that exactly
propagates Gaussian wavepackets, is a natural starting point of that theory [7].

The suggested development also covers two of the principle questions of the quantum
theory. First, one is connected to the possibility of studying the quantum system behaviour
in the region of close coupling. For that purpose it is necessary to build up a perturbation
theory, that does not need to know about the spectrum of the unperturbed system. Also,
there are several such approaches (see, e.g. [3]), which are not generalized to nonstationary
case and so are not suited for scattering problems. Our method exactly serves for that
purpose.

The second question is closely connected to the limits of the quasiclassical description
of the quantum system evolution. The traditional WKB approach, as it is well known,
is limited for scattering applications. At the same time there is the famous path integral
approach that makes it possible to describe exactly quantum dynamics in terms of classical
trajectories. So the basic question is how to improve the WKB approximation to describe
all the effects, for which the traditional approach fails. Our investigations make it possible
to develop the representation of the scattering theory via the classical trajectories and so
build up the intermediate approximate solutions between exact and primitive WKB forms.

It is well known, that the nonstationary form can be reduced by a transformation to the
stationary form [10], that can be solved exactly. In our case unfortunately the use of such
approach is not very effective, since after such transformation the perturbation becomes
so complicated, that analytic computation of the perturbation matrix elements would be
unrealistic.

2. Formulation of the problem

Let us consider the Schrödinger equation for the one-dimensional nonstationary anharmonic
oscillator

L̂9 + λV (x, τ )9 = 0 −∞ < x τ < +∞ (2.1)

L̂ = i∂τ + 1
2∂

2
x − ( 1

2�
2(τ )x2− F(τ)x) (2.2)

with 9 being the oscillator wavefunction,λ being the dimensionless coupling parameter,
and the perturbation potentialV (x, τ ), oscillator frequency�(τ) and the external force
F(τ) having the following asymptotic behaviour

V±(x) = lim
τ→±∞V (x, τ ) �in(out) = lim

τ→±∞�(τ) lim
τ→±∞F(τ) = 0. (2.3)
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Let us assume that the solution of (2.1) satisfies the following boundary and initial
conditions

lim
x→±∞9(x, τ) = 0 lim

x→±∞9(x, τ)∂x9(x, τ ) = 0

lim
τ→−∞9(x, τ) = 9in(n;�in, x)exp[−i(n+ 1

2)�inτ ]
(2.4)

where9in(n;�in, x) is a function of the stationary anharmonic oscillator of the initial
channel.

The physical meaning of these conditions is obvious—the decay of probability and its
flow at infinity—and it corresponds to the formulation of the physical problems, discussed
in the introduction. When perturbation is absent, i.e. withV = 0, the equation

L̂90(n; x, τ ) = 0 (2.5)

with boundary conditions (2.3), (2.4) has an exact solution (see, e.g. [8])

90(n; x, τ ) = f0(n; x, τ ) = K(n; τ) exp(a1(τ )y + a2(τ )y
2)Hn(y)

K(n; τ) =
(
(�in/π)

1/2

2nn!|ζ(τ )|
)1/2

exp

(
i
∫ τ

−∞
Lcl(τ ) dτ − i

∫ τ

−∞
E(n; τ) dτ

) (2.6)

a1(τ ) = i
η̇|ζ |

(�in)1/2
a2(τ ) = 1

2

(
i
|ζ ||ζ̇ |
�in
− 1

)
η̇ = dη/dτ

y = (�in)
1/2x − η(τ)
|ζ(τ )| |ζ̇ | = d|ζ |

dτ

Lcl = 1
2(η̇)

2− 1
2�

2η2+ Fη E(n; τ) = �in

|ζ(τ )|2 (n+
1
2)

(2.7)

with the constant�in being the initial frequency,n being the principle quantum number,
E(n; τ) being the adiabatically changingnth energy level and the functionsζ(τ ), η(τ)
satisfies the equations

ζ̈ +�2(τ )ζ = 0 η̈ +�2(τ )η = F(τ) (2.8)

with the following asymptotic and initial conditions

ζ+(τ ) = lim
τ→∞ ζ(τ ) = c1 exp(i�outτ)− c2 exp(−i�outτ)

ζ−(τ ) = lim
τ→−∞ ζ(τ ) = exp(i�inτ) |c1|2− |c2|2 = 1

η(−∞) = η̇(−∞) = 0.

(2.9)

It is well known that the solution of the second equation (2.8) can be constructed on the
base of the solution of the corresponding homogeneous equation

η(τ) = 1√
2�in

[ζ(τ )d∗(τ )+ ζ ∗(τ )d(τ )] d(τ) = i√
�in

∫ τ

−∞
dτ ′ ζ(τ ′)F (τ ′). (2.10)

A semiclassical-type analysis gives the following form of the solution of (2.1)

9(+)(n; x, τ ) = f (n; x, τ )exp(−8(n; x, τ )) (2.11)

with 9(+) being the total wavefunction, that is developed from thenth asymptotic excited
state atτ →−∞.

Substitution of (2.11) into (2.1) gives the following equation for unknown functions8

andf

(i∂τ8− 1
2(∂x8)

2+ 1
2∂

2
x8− λV (x, τ ))f − (L̂f − (∂x8)(∂xf )) = 0. (2.12)
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For further investigation of equation (2.12) it is convenient to expand functions
f (n; x, τ ) and8(n; x, τ ) into power series overλ

8(n; x, τ ) =
∞∑
k=0

λk8k(n; x, τ ) 80(n; x, τ ) = 0 (2.13)

f (n; x, τ ) =
∞∑
k=0

λkfk(n; x, τ ). (2.14)

As in all exponential approximation approaches, one term of the expansion of8(n; x, τ )
takes into account an infinite number of terms of standard perturbation theory. But the
more we try to take into account within the exponential, the more difficult the equations for
individual members would be. In our case there is an optimal choice, that makes it possible
to formulate additional conditions for (2.13), (2.14), and so to determine both functions8

andfin without ambiguity. Let us start from the equation from thekth correction

i∂τ8k + 1
2∂

2
x8k + q(1)k (x, τ )− f −1

0 (L̂fk − (∂x8k)(∂xf0)+ q(2)k (x, τ )) = 0 (2.15)

with

q
(1)
k = − 1

2

k−1∑
m=1

(∂x8m)(∂x8k−m) k > 2

q
(2)
k (x, τ ) = −

k−1∑
m=1

[
fm(i∂τ8k−m + 1

2∂
2
x8k−m − δk−m,1V

− 1
2

k−m−1∑
l=1

(∂x8l)(∂x8k−m−l))− (∂x8m)(∂xfk−m)
]

k > 2.

(2.16)

In case ofk = 1 one has the simple relations

q
(1)
1 (x, τ ) = −V (x, τ ) q

(2)
1 (x, τ ) = 0. (2.17)

Note, that the eigenenergies are not preserved in our problem and so the corrections to them
in general give no useful information about the system. Thus, the problem is reduced to
the solution of equation (2.15), i.e. to determine the correction to the wavefunction of the
anharmonic oscillator.

3. Construction of the solution

Before solving equation (2.15) let us note two important points.
(a) The equation is not correctly formulated as there are two unknown functions in one

equation.
(b) There is, in general, at least one singular member in this equation. It can be explained

most easily from the analysis of (2.16), taking into account thatf0(n; x, τ ) includes the
Hermitian polynomial. This difficulty is readily solved if the perturbation is of polynomial
form, as we would suppose in the future.

Such form of perturbation does not seriously influence our discussion, as any smooth
perturbation can be approximated by a finite part of its Taylor expansion.

As in every exponential perturbation theory one can solve both above problems by
choosing an additional condition for equation (2.15). Let us start from equations of the first
order in perturbation. It is convenient to choose

i∂τ81+ 1
2∂

2
x81+ q(1)1 (n; x, τ )+Q1(n; x, τ ) = 0 (3.1)

L̂f1 = (∂x81)(∂xf0)−Q1(n; x, τ )f0 (3.2)
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with Q1(n; x, τ ) being an unknown function. With the additional condition of81(n; x, τ )
being a nonsingular correction, one has81(n; x, τ ),Q1(n; x, τ ) and all the terms in (3.2) are
polynomials of the same order, asq(1)1 (n; x, τ ). By expanding the functions of equation (3.2)
in a series of Hermitian polynomials and supposing the absence of the members of an order,
higher thann, one can correctly determine the coefficients of polynomialQ1(n; x, τ ). So,
it is clear that both above difficulties are thus overcome and the system of equations (3.1),
(3.2) is quite correct. The procedure is readily generalized to any order. As fork > 2,
q
(2)
k (n; x, τ ) 6= 0, so one has

Qk(n; x, τ ) =
{
(∂x8k)(∂xf0)− L̂fk

−
k−1∑
m=1

(
fm

[
(i∂τ8k−m)+ 1

2∂
2
x8k−m − δk−m,1V − 1

2

k−m−1∑
l=1

(∂x8l)(∂x8k−m−l)
]

−(∂xfk−m)(∂x8m)

)}
f −1

0 . (3.3)

Taking into account the fact that the expression in square brackets is equal toQk−l ,
equation (3.3) is written in the following form

Qk(n; x, τ ) =
{
(∂x8k)(∂xf0)− L̂fk −

k−1∑
m=1

(fmQk−m − (∂xfm)(∂x8k−m))
}
f −1

0 (3.4)

and for the determination offk one has the equation

L̂fk =
k−1∑
m=1

((∂xfm)(∂x8k−m)− fmQk−m). (3.5)

And again if one supposes thatfm, 8m andQm for m 6 k are polynomials, thenQk and
fk are easily determined and it is possible to find the equation for8k

i∂τ8k + 1
2∂

2
x8k + q(1)k (n; x, τ )+Qk(n; x, τ ) = 0. (3.6)

Note that for the polynomialQk(n; x, τ ) the solution of (3.6) is also a polynomial and
only high-order terms of perturbation potentialV (x, τ ) are important for the determination
of 8m andfm.

4. Calculation of the wavefunction to the first order of perturbation theory

Let us study, in more detail, the case of asymmetric polynomial perturbation

V (x, τ ) = α(τ)x3+ β(τ)x4 =
4∑

m=0

bm(τ)y
m (4.1)

with coefficientsbm(τ) of the form

b0(τ ) = η3(βη + α) b1(τ ) = �−1/2
in η2|ζ |(4βη + 3α)

b2(τ ) = 3�−1
in η|ζ |2(2βη + α) b3(τ ) = �−3/2

in |ζ |3(4βη + α)
b4(τ ) = �−2

in β|ζ |4
(4.2)

and the assumption thatα(τ) andβ(τ) are slowly varying functions ofτ .



7418 A V Bogdanov and A S Gevorkyan

Before passing to the solution of (3.1) and (3.2), in accordance with previous discussion,
let us rewrite81 andQ1 in the following form

81(n; x, τ ) =
4∑
k=0

vk(n; τ)yk Q1(n; x, τ ) =
4∑
k=0

σk(n; τ)yk. (4.3)

Thus, the additional conditions, introduced for regularization of perturbation approach, can
be expressed in the form

f0(n; x, τ )
4∑
k=0

σk(τ )y
k = κ0((2a2(τ )y + a1(τ ))f0(n; x, τ )+ 2nK(n; τ)

×K−1(n− 1; τ)f0(n− 1; x, τ ))
4∑
k=1

kvk(τ )y
k−1− L̂f1 κ0 = �in

|ζ(τ )|2 .

(4.4)

Writing f0(n; x, τ ) in an explicit form and equating coefficients of the polynomials of
the same order on both sides of (4.4) we may determine the coefficients in the polynomial
Q1(n; x, τ ):
σ0(n; τ) = κ0(a1v1+ 2nv2+ 2n(n− 1)v4) σ1(n; τ) = 2κ0(a2v1+ a1v2+ 3

2nv3)

σ2(n; τ) = 4κ0(a2v + 3
2a1v3+ nv4) σ3(n; τ) = 6κ0(a2v3+ 2

3a1v4)

σ4(n; τ) = 8κ0a2v4.

(4.5)

Substituting (4.5) into (3.1) one obtains a system of nonuniform linear differential
equations for the determination of coefficients in the correction81(n; x, τ ):
iv̇j − cj (τ )vj − dj (τ ) = 0 v̇j = dvj (τ )/dτ j = 0, 1, 2, 3, 4 (4.6)

with functionscj (τ ) anddj (τ ) given by

c4(τ ) = 4κ0 c3(τ ) = 3κ0 c2(τ ) = 2κ0 c1(τ ) = κ0 c0(τ ) = 0

d4(τ ) = b4 d3(τ ) = b3 d2(τ ) = b2+ 2(2n+ 3)κ0v4

d1(τ ) = b1+ 3(n+ 1)κ0v3 d0(τ ) = b0+ (2n+ 1)κ0v2+ 2n(n− 1)κ0v4.

(4.7)

Initial conditions for system (4.5) are

v−0 = 0 v̇−0 = −id0 v−j = −
d−j
c−j

j = 1, 2, 3, 4. (4.8)

Note that ‘−’ parameters correspond to the limitτ →−∞. It is clear that the solution
of (4.6) must start fromj = 4. In such a way, the solution of each equation is presented in
the following form

vj (τ ) = Gj(τ,−∞)
[
v−j − i

∫ τ

−∞
Gj(−∞, τ ′)dj (τ ′) dτ ′

]
j = 0, . . . ,4 (4.9)

with Gj(τ, τ ′) being the evolution operator of the pertinent homogeneous equation

Gj(τ, τ
′) = G−1

j (τ ′, τ ) = exp

[
− ij

∫ τ

τ ′
κ0(τ

′′) dτ ′′
]
. (4.10)

Taking into account conditions (4.5), equation (4.4) can be represented in the following
form

L̂f1(n; x, τ )−
4∑

j=1

ēj (n; τ)f0(n− j ; x, τ ) = 0 (4.11)
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with

ē4(n; τ) = 2κ0v4

[
n!

(n− 4)!

]1/2

G4(−∞, τ )

ē3(n; τ) = 3κ0v3

[
n!

2(n− 3)!

]1/2

G3(−∞, τ )

ē2 = κ0[2(2n− 3)v4+ v2]

[
n!

(n− 2)!

]1/2

G2(−∞, τ )

ē1(n; τ) = κ0[3(n− 1)v3+ 2v1]

[
n!

2(n− 1)!

]1/2

G1(−∞, τ ).

(4.12)

In all cases, whenn − j ≺ 0, ēj are equal to zero. The solution of (4.11) is naturally
represented in such a way

f1(n; x, τ ) =
4∑

j=1

w̄j (n; τ)f0(n− j ; x, τ ) w̄j (n; τ) = Gj(−∞, τ )wj (n; τ). (4.13)

Substituting (4.13) into (4.11) one obtains the linear first-order equations for coefficients
wj(τ)

iẇj − jκ0(τ )wj − ej (n; τ) = 0 ej (n; τ) = ēj (n; τ)Gj (τ,−∞) (4.14)

with initial conditions

w−j = lim
τ→−∞wj(n; τ) = −

ej (n,−∞)
jκ0(−∞) j = 1, . . . ,4. (4.15)

The solution of this equation is obvious,

wj(τ) = Gj(τ,−∞)
[
w−j − i

∫ τ

−∞
dτ ′Gj(−∞, τ ′)ej (τ ′)

]
. (4.16)

Solutions for expansions of higher orders are constructed in the same way.

5. Calculation of the transition S-matrix for nonstationary anharmonic oscillator

The fact that unharmonic oscillator wavefunctions, determined above, are nonstationary,
opens new possibilities in view of our previous result [6]. It was shown there that
scattering in the three-body collinear system is effectively reduced to the evolution of the
anharmonic oscillator in the external field, and so the above wavefunctions can be used for
the computation of the scattering matrix. It is not evident how to calculate the scattering
matrix elements via the oscillator functions. It is possible to show, using the development
of [5], thatS-matrix elements for scattering problems can be represented in one-dimensional
integral in the form, similar to standard representation [9] of the nonstationaryS-matrix:

Smn = lim
τ→+∞〈ψ

∗
f (m; x, τ )ψ+(n; x, τ )〉 〈. . .〉 =

∫ ∞
−∞

. . .dx (5.1)

with ψf (m; x, τ ) being the asymptotic wavefunction of the final state. Let us examine the
approximations of exact and asymptotic wavefunctions. For the nonstationary wavefunction
ψ(+)(n; x, τ ) with the help of (2.11) to the first order of perturbation theory overλ one has

ψ(+)(n; x, τ ) = [fλ(n; x, τ )+ λf 1
λ (n; x, τ )] exp

[
− λ

4∑
l=1

vl(τ )y
l

]
+O(λ2)

fλ(n; x, τ ) = exp[−λv0(τ )]f0(n; x, τ ) f 1
λ (n; x, τ ) = exp[−λv0(τ )]f1(n; x, τ ).

(5.2)
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Note that functionsf0(n; x, τ ) andf1(n; x, τ ) are determined by formulae (2.6), (2.7) and
(4.13). Expanding the exponential function in (5.2) one has

ψ(+)(n; x, τ ) = fλ(n; x, τ )+ λ
[
f 1
λ (n; x, τ )− fλ(n; x, τ )

4∑
l=1

vl(τ )y
l

]
+O(λ2). (5.3)

Now one can use the well known formula for Hermitian polynomialsxHm(x) =
1/2Hm+1(x) + mHm−1(x) and expand in (5.3) the expressions of the typeyjfλ(n; x, τ )
into the series over the Hermit polynomials. One obtains

ψ(+)(n; x, τ ) = fλ(n; x, τ )+ λ
[ 4∑
j=1

w̄l(n; τ)fλ(n− l; x, τ )

−
4∑

p=−4

ūp(n; τ)fλ(n− p; x, τ )
]
+O(λ2) (5.4)

with

ūp(n; τ) = Gp(τ,−∞)up(n; τ) up(n; τ) =
[
(n− p)!

2pn!

]1/2

χp(n; τ). (5.5)

In view of χp(n; τ) functions, they are given by the following expressions

χ−4(n; τ) = 1

24
v4(τ ) χ−3(n; τ) = 1

23
v3(τ )

χ−2(n; τ) = 1
2(n+ 3

2)v4(τ )+ 1

22
v2(τ ) χ−1(n; τ) = 3

4(n+ 1)v3(τ )+ 1
2v1(τ )

χ0(n; τ) = 3
2(n

2+ n+ 1
2)v4(τ )+ (n+ 1

2)v2(τ )

χ4(n; τ) = n(n− 1)(n− 2)(n− 3)v4(τ ) χ3(n; τ) = n(n− 1)(n− 2)v3(τ )

χ2(n; τ) = 3n(n− 1)2v4(τ )+ n(n− 1)v2(τ ) χ1(n; τ) = 3
2n

2v3(τ )+ nv1(τ ).

(5.6)

In the same way we can obtain the representations for asymptotic states of the
anharmonic oscillator. So for (out) states one has

ψf (m; x, τ ) = ϕ0
f (m; x, τ )+ λ

[ 4∑
l=1

w̄
f

l (m; τ)ϕ0
f (m− l; x, τ )

−
4∑

p=−4

ūfp (m; τ)ϕ0
f (m− p; x, τ )

]
+O(λ2). (5.7)

The functionϕ0
f (m; x, τ ) in the above expression is an (out) asymptotic state of the

harmonic oscillator

ϕ0
f (m; x, τ ) = ϕ0

f (m;�out; x) exp[−i(m+ 1
2)�outτ ] (5.8)

ϕ0
f (m;�; x) =

[
(�/π)1/2

2mm!

]1/2

exp(− 1
2�x

2)Hm(
√
�x). (5.9)

In the above expressions the functionsw̄fl (m; τ) and ūfp (m; τ) are given by

w̄
f

l (m; τ) = wfl (m) exp(−il�outτ) (5.10)

ūfp (n; τ) = ufp (n) exp(−ip�outτ). (5.11)
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In view of coefficientswfl (m) andufp (n), they can immediately be obtained from (4.16),
(5.7) and (5.8) in the limitτ → −∞ after the substitution ofw−j → w

f

j and v−j → v
f

j .
Now, taking into account (5.5) and (5.10) and using (5.3) and (5.6) in (5.1) one obtains

Smn(λ) = (S0
mn + λ[S1

mn + S2
mn]) exp[−λv(+)0 ] +O(λ2) (5.12)

with

S1
mn =

4∑
l=1

w
f

l (m)S
0
(m−l)n −

4∑
p=−4

ufp (m)S
0
(m−p)n (5.13)

S2
mn =

4∑
l=1

w
(+)
l (m)S0

m(n−l) −
4∑

p=−4

u(+)p (n)S0
m(n−p) (5.14)

S0
mn = lim

τ→+∞〈(ϕ
0
f (m; x, τ ))∗f0(n; x, τ )〉. (5.15)

Now, starting from (5.12)–(5.15), it is not difficult to obtain the analytic expressions for
transition probabilities for the anharmonic oscillator,

Wmn(λ) = exp[−2λv(+)0 ]

[
1+ 2λRe

(
S1
mn + S2

mn

S0
mn

)]
W 0
mn +O(λ2) (5.16)

W 0
mn = |S0

mn|2 = lim
λ→0

Wmn(λ). (5.17)

In the above expressions, the valueS0
mn is a matrix element of theS-matrix for transitions

in the harmonic oscillator with variable frequency�(τ) in the external field. The matrix
element in (5.15) is calculated via the generating function [6] (see also [10]). So we can
only give here the final result

W 0
mn =

(
1− ρ
m!n!

)1/2

|Hmn(y1, y2)|2 exp[−ν(1−√ρ cos 2θ)]. (5.18)

HereHmn(y1, y2) is the Hermitian polynomial of two variables [10] with

y1 =
√
ν(1− ρ)eiθ y2 = −

√
ν(e−iθ −√ρeiθ ) θ = 1

2(δ1+ δ2)− β. (5.19)

The parametersν, ρ, δj andβ are determined from the solution of the classical problem
for harmonic oscillator (2.3), (2.9) and are given by the following expressions:

c1 = eiδ1

√
�in

�out

1

(1− ρ)1/2 c2 = eiδ2

√
�in

�out

(
ρ

1− ρ
)1/2

ρ =
∣∣∣∣c2

c1

∣∣∣∣2 d = lim
τ→+∞ d(τ) =

√
νeiβ.

(5.20)

Note that in the expression proposed both forS-matrix (5.1) and transition probabilityWmn

(5.16) we only used the first members of the expansion of exponentials in Taylor series
over the coordinatey. Such approximations for the wavefunction and transition probability
are effectively used for many interesting applications. In some cases, when anharmonic
perturbation substantially changes the spectrum of the problem and thus our expansion
bases, the leading terms of perturbation must be taken into account.

It is clear that for scattering problems unharmonic perturbation is very important for
higher excited states, especially for rearrangement processes. At the same time in some
situations for rearrangement processes even for the ground state, the effect of perturbation
can be substantial. To show it let us discuss one particular case.
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6. Application to the ‘ground state–ground state’ transition

We shall demonstrate an application of the method proposed to the most simple situation—
the perturbation of the parametric harmonic oscillator by symmetric potentialβ(τ)x4,
with β(τ) being adiabatically changing functions with boundary valuesβ(−∞) = 0 and
β(∞) = β+ 6= 0. Note that the transition probability for the unperturbed oscillator can
be obtained from (5.16) withν = 0, or by Taylor expansion of the generating function of
correspondingS-matrix [10]

W(0)
mn = |S(0)mn|2 =

n<!

n>!

√
1− ρ

∣∣∣P (n>−n<)/2(n<+n>)/2
(√

1− ρ
)∣∣∣2 (6.1)

S(0)mn(ρ) =
1√
m!n!
{∂mz1

∂nz2
I (z1, z2; ρ)}z1=z2=0 (6.2)

where the generating functionI is equal to

I (z1, z2; ρ) = (1− ρ)1/4 exp
{

1
2

[√
ρ(z2

1 − z2
2)+ 2

√
1− ρz1z2

]}
(6.3)

with n< = min(m, n), n> = max(m, n), and Pmn (x) being the associated Legendre
polynomial.

For many reasons one of the most important parameters of the problem isW00(λ; ρ),
which measures the probability of the change of the initial ground state to the final ground
state. So we shall discuss it in more detail. From (6.1–(6.3) one obtains

W00(λ; ρ) = exp[−λv(+)0 ][1 − 2 Re3(ρ)]W(0)
00 (ρ) (6.4)

3(ρ) = [S(0)00 ]−1
2∑
k=0

(u
f

−2kS
(0)
2k,0+ u(+)−2kS

(0)
0,2k) (6.5)

with matrix elementsS(0)2k,0 andS(0)02,k given by (6.2) and (6.3),

S
(0)
00 = (1− ρ)1/4 S

(0)
20 = −S(0)02 =

1√
2!

√
ρS

(0)
00 S

(0)
40 = S(0)04 =

1√
4!
ρS

(0)
00 . (6.6)

For the determination of theuf−2k andu(+)−2k coefficients, that are important for the3(ρ)

dependence and also the dependence of scattering amplitude, one must find coefficientsv
f

j

and v(+)j = vj (∞). After integrating (4.9) by parts and taking into account the adiabatic
dependenceβ(τ) one obtains

vj ' − dj

jk0(τ )
+ 1

j
Gj (τ ;−∞)

∫ τ

−∞
dτ ′Gj(−∞, τ ′) ḋj (τ

′)
k0(τ ′)

j = 1, 2, 3, 4. (6.7)

Now the coefficientsv(+)j are determined from (6.7) by taking into account (4.7) and (4.8)
by using integration by parts and averaging over fast oscillations

v
(+)
4 ' − β

+

4k̄3
0

v
(+)
2 ' 3β+

4k̄3
0

v
(+)
0 ' 3β+

8k̄3
0

k̄0 = �in/(|c1|2+ |c2|2).
(6.8)

In the same way, for the coefficientsvfj one has

v
f

4 = −
d
f

4

c
f

4

= −1

4

β+

�3
out

v
f

2 = −
d
f

2

c
f

2

= 3

4

β+

�3
out

v
f

0 = 0

c
f

j = j�out.

(6.9)
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Now using (5.5)–(5.7) from (6.8), (6.9) one obtains the expressions for coefficientsu+−2k

anduf−2k in the form

u
f

0 =
3

16

(
β+

�3
out

)
u+0 =

3

16

β+

�3
out

(
1+ ρ
1− ρ

)3

u
f

−2 = u+−2 = 0 u
f

−4 = −
1

4

√
3

2

β+

�3
out

u+−4 = −
1

4

√
3

2

β+

�3
out

(
1+ ρ
1− ρ

)3

.

(6.10)

Formula (6.4) with the above results gives the final expression forW00

W00(λ; ρ) '
√

1− ρ{1− λ[1− v+0 (ρ)](1− 1
3ρ)} exp[−λv+0 (ρ)] (6.11)

with new notations

v+0 (ρ) =
�3

out

β+
v
(+)
0 =

(
1+ ρ
1− ρ

)3

λ→ 3β+

8�3
out

λ.

As it was shown in [10], parameterρ, that measures the excitation of classical oscillator,
corresponds to quantum mechanical reflection coefficient of the particle with momentum
k(x) = �(x). That makes it possible to use the well known results from quantum mechanics
for ρ.

As can be seen from figure 1, the anharmonic oscillator, unlike the harmonic parametric
one, in the limitρ → 0 has a transition probability that is not equal to 1. Not only that,
as it is seen from (6.11), the dependence of transition probability overλ is regular, which
makes it possible to use the proposed formula up to the values ofλ of the order of unity.

Figure 1. The dependence of the ‘ground state–ground state’ transition probability on the
reflection coefficientρ and dimensionless constantλ.
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7. Conclusions

Many important problems in theoretical and mathematical physics are reduced to the solution
of the equation of the nonstationary unharmonic oscillator with different sets of (in) and
(out) states. The use of standard approaches to such a problem meets the following two
basic difficulties.

(a) Opposite to the stationary situation, we do not have the fixed basic set for the
perturbed wavefunction.

(b) In nonstationary situations the dimensionless perturbation parameter changes with
time and can become large in the strong coupling region.

In this paper, as a generalization of nonlinearization method [3], we propose a way
to overcome the above difficulties. The perturbation theory is constructed on exact
wavefunctions for the quantum harmonic oscillator with variable frequency in external field
as a basis state. This makes it possible, due to some unique intrinsic properties of those
solutions, to work out the system of two linear equations, that determine the first corrections
both to the amplitude and to the phase of the total wavefunction. It should also be noted
that thenth-order correction is also determined by two independent differential equations,
that are obtained aftern iterations.

A very important computational property of our approach is connected to the fact that
any order correction is constructed on the basis of a finite number of wavevectors. This
will allow one to calculate the corrections to the transition operator.

The possibility of a simultaneous correction of the phase and amplitude of the
wavefunctions, as in the case of the stationary problem, gives a regular method of
investigation of the strong coupling region, where perturbation is strong and the small
parameter is absent.

The use of this approach is well suited in numerous applications, of which we point out
only some of the most important:
• corrections to path integral representations of the propagator in field and scattering

theories;
• account of kinetics in some problems of solid-state and condensed matter physics;
• anharmonic corrections for scattering matrix in collinear model of rearrangement

collisions;
• anharmonic corrections for the propagator in the wavepacket dynamics approach to

molecular scattering.
We shall discuss these problems in detail in our future publications.
Note that analysis of the proposed expressions shows that taking account of

antisymmetric terms in potential expansion can cause nonadiabatic behaviour and also cause
nonanalytic dependence ofW00(λ; ρ) over λ. Depending on the form of the perturbation,
‘ground state–ground state’ transition probability might have several maxima in such a case.
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